TensorRT-LLM保姆级教程(一)-快速入门
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。
本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。
另外,我撰写的大模型相关的博客及配套代码均整理放置在Github:llm-action,有需要的朋友自取。
TensorRT-LLM 诞生的背景
第一、大模型参数量大,推理成本高。以10B参数规模的大模型为例,使用FP16数据类型进行部署至少需要20GB以上(模型权重+KV缓存等)。
第二、纯TensorRT使用较复杂,ONNX存在内存限制。深度学习模型通常使用各种框架(如PyTorch、TensorFlow、Keras等)进行训练和部署,而每个框架都有自己的模型表示和存储格式。因此,开发者通常使用 ONNX 解决深度学习模型在不同框架之间的互操作性问题。比如:TensorRT 就需要先将 PyTorch 模型转成 ONNX,然后再将 ONNX 转成 TensorRT。除此之外,一般还需要做数据对齐,因此需要编写 plugin,通过修改 ONNX 来适配 TensorRT plugin。另外, ONNX 使用Protobuf作为其模型文件的序列化格式。Protobuf是一种轻量级的、高效的数据交换格式,但它在序列化和反序列化大型数据时有一个默认的大小限制。在Protobuf中,默认的大小限制是2GB。这意味着单个序列化的消息不能超过2GB的大小。当你尝试加载或修改超过2GB的ONNX模型时,就会收到相关的限制提示。
第三、 纯FastTransformer使用门槛高。FastTransformer 是用 C++ 实现的;同时,它的接口和文档相对较少,用户可能需要更深入地了解其底层实现和使用方式,这对于初学者来说可能会增加学习和使用的难度。并且 FastTransformer 的生态较小,可用的资源和支持较少,这也会增加使用者在理解和应用 FastTransformer 上的困难。因此,与 Python 应用程序的部署和集成相比,它可能涉及到更多的技术细节和挑战。这可能需要用户具备更多的系统级编程知识和经验,以便将 FastTransformer 与其他系统或应用程序进行无缝集成。
综上所述,TensorRT-LLM 诞生了。
TensorRT-LLM 简介
TensorRT-LLM 为用户提供了易于使用的 Python API 来定义大语言模型 (LLM) 并构建 TensorRT 引擎,以便在 NVIDIA GPU 上高效地执行推理。 TensorRT-LLM 还包含用于创建执行这些 TensorRT 引擎的 Python 和 C++ 运行时组件。 此外,它还包括一个用于与 NVIDIA Triton 推理服务集成的后端;
同时, 使用 TensorRT-LLM 构建的模型可以使用使用张量并行和流水线并行在单 GPU 或者多机多 GPU 上执行。
TensorRT-LLM 的 Python API 的架构看起来与 PyTorch API 类似。 它为用户提供了包含 einsum、softmax、matmul 或 view 等函数的 functional 模块。 layers 模块捆绑了有用的构建块来组装 LLM; 比如: Attention 块、MLP 或整个 Transformer 层。 特定于模型的组件,例如: GPTAttention 或 BertAttention,可以在 models 模块中找到。
为了最大限度地提高性能并减少内存占用,TensorRT-LLM 允许使用不同的量化模式执行模型。 TensorRT-LLM 支持 INT4 或 INT8 权重量化(也称为仅 INT4/INT8 权重量化)以及 SmoothQuant 技术的完整实现。同时,TensorRT-LLM 优化了一系列知名模型在 NVIDIA GPU 上的性能。
支持的设备
TensorRT-LLM 在以下 GPU 上经过严格测试:
-
H100 -
L40S -
A100/ A30 -
V100 (试验阶段)
注意:如果是上面未列出 GPU,TensorRT-LLM 预计可在基于 Volta、Turing、Ampere、Hopper 和 Ada Lovelace 架构的 GPU 上工作。但是,可能存在某些限制。
关键特性
-
支持多头注意力( Multi-head Attention,MHA) -
支持多查询注意力 ( Multi-query Attention,MQA) -
支持分组查询注意力( Group-query Attention,GQA) -
支持飞行批处理(In-flight Batching) -
Paged KV Cache for the Attention -
支持 张量并行 -
支持 流水线并行 -
支持仅 INT4/INT8 权重量化 (W4A16 & W8A16) -
支持 SmoothQuant 量化 -
支持 GPTQ 量化 -
支持 AWQ 量化 -
支持 FP8 -
支持贪心搜索(Greedy-search) -
支持波束搜索(Beam-search) -
支持旋转位置编码(RoPE)
支持的模型
-
Baichuan -
Bert -
Blip2 -
BLOOM -
ChatGLM-6B -
ChatGLM2-6B -
Falcon -
GPT -
GPT-J -
GPT-Nemo -
GPT-NeoX -
LLaMA -
LLaMA-v2 -
MPT -
OPT -
SantaCoder -
StarCoder
支持的精度
TensorRT-LLM 支持各种数值精度。 但对其中一些数字精度的支持需要特定的GPU架构。
FP32 | FP16 | BF16 | FP8 | INT8 | INT4 | |
---|---|---|---|---|---|---|
Volta (SM70) | Y | Y | N | N | Y | Y |
Turing (SM75) | Y | Y | N | N | Y | Y |
Ampere (SM80, SM86) | Y | Y | Y | N | Y | Y |
Ada-Lovelace (SM89) | Y | Y | Y | Y | Y | Y |
Hopper (SM90) | Y | Y | Y | Y | Y | Y |
对于目前发布的v0.5.0,并非所有模型都实现了对 FP8 和量化数据类型(INT8 或 INT4)的支持,具体如下所示。
Model | FP32 | FP16 | BF16 | FP8 | W8A8 SQ | W8A16 | W4A16 | W4A16 AWQ | W4A16 GPTQ |
---|---|---|---|---|---|---|---|---|---|
Baichuan | Y | Y | Y | . | . | Y | Y | . | . |
BERT | Y | Y | Y | . | . | . | . | . | . |
BLOOM | Y | Y | Y | . | Y | Y | Y | . | . |
ChatGLM | Y | Y | Y | . | . | . | . | . | . |
ChatGLM-v2 | Y | Y | Y | . | . | . | . | . | . |
Falcon | Y | Y | Y | . | . | . | . | . | . |
GPT | Y | Y | Y | Y | Y | Y | Y | . | . |
GPT-J | Y | Y | Y | Y | Y | Y | Y | Y | . |
GPT-NeMo | Y | Y | Y | . | . | . | . | . | . |
GPT-NeoX | Y | Y | Y | . | . | . | . | . | Y |
LLaMA | Y | Y | Y | . | Y | Y | Y | Y | Y |
LLaMA-v2 | Y | Y | Y | Y | Y | Y | Y | Y | Y |
OPT | Y | Y | Y | . | . | . | . | . | . |
SantaCoder | Y | Y | Y | . | . | . | . | . | . |
StarCoder | Y | Y | Y | . | . | . | . | . | . |
TensorRT-LLM 的性能
注意:
下表中的数据作为参考进行提供,以帮助用户验证观察到的性能。这不是 TensorRT-LLM 提供的峰值性能。
不同模型基于 FP16 在 A100 GPUs 上的吞吐量:
Model | Batch Size | TP (1) | Input Length | Output Length | Throughput (out tok/s) |
---|---|---|---|---|---|
GPT-J 6B | 64 | 1 | 128 | 128 | 3,679 |
GPT-J 6B | 32 | 1 | 128 | 2048 | 1,558 |
GPT-J 6B | 32 | 1 | 2048 | 128 | 526 |
GPT-J 6B | 16 | 1 | 2048 | 2048 | 650 |
LLaMA 7B | 64 | 1 | 128 | 128 | 3,486 |
LLaMA 7B | 32 | 1 | 128 | 2048 | 1,459 |
LLaMA 7B | 32 | 1 | 2048 | 128 | 529 |
LLaMA 7B | 16 | 1 | 2048 | 2048 | 592 |
LLaMA 70B | 64 | 4 | 128 | 128 | 1,237 |
LLaMA 70B | 64 | 4 | 128 | 2048 | 1,181 |
LLaMA 70B | 64 | 4 | 2048 | 128 | 272 |
LLaMA 70B | 64 | 4 | 2048 | 2048 | 738 |
Falcon 180B | 64 | 8 | 128 | 128 | 929 |
Falcon 180B | 64 | 8 | 128 | 2048 | 923 |
Falcon 180B | 64 | 8 | 2048 | 128 | 202 |
不同模型基于 FP16 在 A100 GPUs 上的首Token延迟:
针对批量大小为 1 时,第一个Token延迟的数据,代表终端用户感知在线流任务的延迟。
Model | Batch Size | TP (1) | Input Length | 1st Token Latency (ms) |
---|---|---|---|---|
GPT-J 6B | 1 | 1 | 128 | 12 |
GPT-J 6B | 1 | 1 | 2048 | 129 |
LLaMA 7B | 1 | 1 | 128 | 16 |
LLaMA 7B | 1 | 1 | 2048 | 133 |
LLaMA 70B | 1 | 4 | 128 | 47 |
LLaMA 70B | 1 | 4 | 2048 | 377 |
Falcon 180B | 1 | 8 | 128 | 61 |
Falcon 180B | 1 | 8 | 2048 | 509 |
结语
本文简要概述了TensorRT-LLM诞生的原因以及基本特征。码字不易,如果觉得有帮助,欢迎点赞收藏加关注。
参考文档:
-
https://github.com/NVIDIA/TensorRT-LLM/tree/v0.5.0 -
https://github.com/NVIDIA/TensorRT-LLM/blob/v0.5.0/docs/source/precision.md -
https://github.com/NVIDIA/TensorRT-LLM/blob/v0.5.0/docs/source/performance.md